
1 How To Use This Document

Highly regulated industries, such as banking and insurance, must comply with government

regulations for model validation before a model can be put into production. This includes creating

robust model development documentation. DataRobot automates the generation of model

documentation, expediting the process required for regulatory compliance and following best

practice for reducing model risk.

This document is split into two components: those sections that are automatically produced by

DataRobot and those that require further input by the user. The sections in blue italicized font

include specific instructions for the documenter and require additional user input of organization-

specific information, such as business use cases, data sources, and implementation details. Once the

sections are complete, remove the instructions. The remaining sections in non-blue italicized font

are automatically populated by DataRobot and require no further input.

Copyright ©2023, DataRobot, Inc.

Table of Contents

• 1 How To Use This Document

• 2 Model Performance Overview

• 3 Model Features Summary

• 3.1 Model Features and Summary Statistics

• 3.2 Data Quality Handling Report

• 4 Model Summary and Description

• 5 Feature Effects

• 6 Feature Impact Chart

• 7 Feature Impact Table

• 8 Validation Testing and Stability

• 8.1 Cross Validation Scores

• 9 Model Results

• 10 Bias and Fairness

2 Model Performance Overview

As an additional layer of model validity, DataRobot not only evaluated the statistical metrics

underlying the model, but also performed testing on in-sample records.

The performance metric used for this project was LogLoss. The model performance results are

presented below for in-sample testing:

Scoring Type Score (LogLoss)

cross_validation 0.3652*

holdout 0.3039*

validation 0.3652*

3 Model Features Summary

Below are two tables. The first contains a list of the final set of model feature variables, as well as

summary statistics for the LightGBM Random Forest Classifier model. The second table contains a

detailed analysis of missing values.

The Model Features and Summary Statistics table provides a brief overview of the summary

statistics of model features. This includes Feature Name, variable type (Var Type), number of

unique values (Unique), Number of missing values (Missing), Mean, Standard Deviation (Std Dev),

Median, Minimum Value (Min), Maximum Value (Max) and Assessment of target leakage risk

(Target Leakage).

3.1 Model Features and Summary Statistics
Feature Name Var Type Unique Missing Mean Std Dev Median Min Max Target

Leakage

water_tech_clean Categorical 29 77839 N/A N/A N/A N/A N/A Low

water_source_clean Categorical 12 21944 N/A N/A N/A N/A N/A Low

water_tech_category Categorical 4 77839 N/A N/A N/A N/A N/A Low

water_source_category Categorical 6 21944 N/A N/A N/A N/A N/A Low

management_clean Categorical 9 71110 N/A N/A N/A N/A N/A Low

pay_clean Categorical 9 180039 N/A N/A N/A N/A N/A Low

subjective_quality_clean Categorical 5 179116 N/A N/A N/A N/A N/A Low

age_in_years Numeric 16654 5112 10.304 11.0009 6.63 -29.99 115.38 Low

distance_to_primary Numeric 247831 0 19800.29 24692.39 11990.36 0.0065 249271.072 Low

distance_to_secondary Numeric 247831 0 9803.074 12624.29 5457.99 0.016 164233.93 Low

distance_to_tertiary Numeric 247831 0 3896.92 5590.17 1816.59 0.0096 86007.508 Low

distance_to_city Numeric 247401 1147 51982.75 41989.75 41192.14 12.12 350229.88 Low

distance_to_town Numeric 247831 0 17249.43 14207.83 13913.68 3.8 136251.203 Low

precipitation_5year Numeric 2926 57514 1410.89 934.87 1210.93 160.84 12236.03 Low

precipitation_10year Numeric 2914 57514 1426.76 935.36 1228.21 172.63 12589.39 Low

acled_index Numeric 382 1595 24.78 75.083 3.0 0.0 4065.0 Low

bgs_recharge Numeric 2799 17025 96.78 44.94 92.28 0.0 242.74 Low

water_risk Numeric 693 0 2.304 0.84 2.14 -1.0 4.75 Low

rwi Numeric 1508 0 -0.21 0.39 -0.27 -1.36 1.87 Low

assigned_population Numeric 7804 8963 649.27 2327.94 268.0 0.0 379506.0 Low

local_population Numeric 22000 8963 3703.034 7720.87 1345.0 0.0 379506.0 Low

pressure Numeric 13072 14285 2.25 6.13 1.01 0.001 722.86 Low

crucialness Numeric 157152 14179 0.35 0.32 0.23 0.0003 1.0 Low

population_1km Numeric 171262 11085 3689.54 7955.99 1255.097 -0.0 358831.44 Low

men_ratio_1km Numeric 60636 11085 0.49 0.67 0.49 -37.0 155.53 Low

women_of_reproductive_age_ratio_1km Numeric 61122 11085 0.24 0.34 0.24 -41.044 105.29 Low

youth_ratio_1km Numeric 50873 11085 0.2 0.33 0.203 -91.75 64.25 Low

elderly_ratio_1km Numeric 57937 11085 0.053 0.076 0.049 -20.36 24.69 Low

children_under_five_ratio_1km Numeric 54834 11085 0.16 0.16 0.17 -39.0 26.0 Low

population_10km Numeric 120342 11085 127448.43 266026.65 65527.38 -0.0 9830356.0 Low

men_ratio_10km Numeric 104025 11085 0.49 0.036 0.49 -5.5 5.5 Low

women_of_reproductive_age_ratio_10km Numeric 105518 11085 0.24 0.022 0.24 -1.0 2.5 Low

population_100km Numeric 14001 11083 5554633.48 4424416.34 4330562.0 37718.29 58837100.0 Low

youth_ratio_100km Numeric 13920 11083 0.2 0.013 0.203 0.16 0.26 Low

orig_status_id Categorical 2 0 N/A N/A N/A N/A N/A Low

The last column in this table is an assessment of target leakage risk. DataRobot automatically tests

for target leakage on a per-feature basis during the Autopilot process. Target leakage, sometimes

called data leakage, occurs when a model is trained using a dataset that includes information that

would not be available at the time of prediction. This can produce overly optimistic model

performance results during training, given a feature will near-completely describe the target (e.g.,

the number of late payments on a loan as a predictor for loan default at loan application date.)

DataRobot tests for target leakage risk using Alternating Conditional Expectation (ACE) to measure

the association between each feature and the target; the ACE score is normalized using the project

optimization metric so that its value is in the range [0,1]. If above a certain threshold (see below),

DataRobot will create a new feature list with those features flagged and possibly removed, and the

user is notified by a banner in the user interface during modeling. Notably, because the definition of

target leakage is directly tied with prediction time and not strength of association between a

feature and the target, it's possible for DataRobot to not identify all sources of target leakage.

Therefore, to reduce the risk for potential target leakage in the feature list, it's important to apply

subject matter expertise.

The thresholds for target leakage risk are based on a normalized ACE score:

• High risk: > 0.975, flagged and removed

• Moderate risk: > 0.85, flagged but not removed

• Low risk: < 0.85, no action

The following table provides a summary of missing values. It includes the name of the feature, its

type, a summary of the missing value count (both number of rows and as a percentage), and

information on the type of imputation applied to the feature.

3.2 Data Quality Handling Report
Feature Name Var Type Missing Count Missing Percentage Imputation Name Imputation Description

subjective_quality_clean Categorical 214044 68 Ordinal encoding of

categorical variables

Imputed value: -2

pay_clean Categorical 213754 68 Ordinal encoding of

categorical variables

Imputed value: -2

water_tech_clean Categorical 90574 29 Ordinal encoding of

categorical variables

Imputed value: -2

water_tech_category Categorical 90574 29 Ordinal encoding of

categorical variables

Imputed value: -2

management_clean Categorical 86912 27 Ordinal encoding of

categorical variables

Imputed value: -2

precipitation_5year Numeric 68024 21 Missing Values Imputed Imputed value: -9999

precipitation_10year Numeric 68024 21 Missing Values Imputed Imputed value: -9999

water_source_clean Categorical 29908 9 Ordinal encoding of

categorical variables

Imputed value: -2

water_source_category Categorical 29908 9 Ordinal encoding of

categorical variables

Imputed value: -2

bgs_recharge Numeric 20017 6 Missing Values Imputed Imputed value: -9999

pressure Numeric 18425 6 Missing Values Imputed Imputed value: -9999

crucialness Numeric 18302 6 Missing Values Imputed Imputed value: -9999

population_1km Numeric 13033 4 Missing Values Imputed Imputed value: -9999

men_ratio_1km Numeric 13033 4 Missing Values Imputed Imputed value: -9999

women_of_reproductive_age_ratio_1km Numeric 13033 4 Missing Values Imputed Imputed value: -9999

youth_ratio_1km Numeric 13033 4 Missing Values Imputed Imputed value: -9999

elderly_ratio_1km Numeric 13033 4 Missing Values Imputed Imputed value: -9999

children_under_five_ratio_1km Numeric 13033 4 Missing Values Imputed Imputed value: -9999

population_10km Numeric 13033 4 Missing Values Imputed Imputed value: -9999

men_ratio_10km Numeric 13033 4 Missing Values Imputed Imputed value: -9999

women_of_reproductive_age_ratio_10km Numeric 13033 4 Missing Values Imputed Imputed value: -9999

population_100km Numeric 13031 4 Missing Values Imputed Imputed value: -9999

youth_ratio_100km Numeric 13031 4 Missing Values Imputed Imputed value: -9999

assigned_population Numeric 12705 4 Missing Values Imputed Imputed value: -9999

local_population Numeric 12705 4 Missing Values Imputed Imputed value: -9999

age_in_years Numeric 6528 2 Missing Values Imputed Imputed value: -9999

acled_index Numeric 1871 1 Missing Values Imputed Imputed value: -9999

distance_to_city Numeric 1147 0 Missing Values Imputed Imputed value: -9999

orig_status_id Categorical 0 0 Ordinal encoding of

categorical variables

Imputed value: -2

distance_to_primary Numeric 0 0 Missing Values Imputed Imputed value:

12392.117

distance_to_secondary Numeric 0 0 Missing Values Imputed Imputed value:

5511.5679

distance_to_tertiary Numeric 0 0 Missing Values Imputed Imputed value:

1787.7548

distance_to_town Numeric 0 0 Missing Values Imputed Imputed value:

14049.666

water_risk Numeric 0 0 Missing Values Imputed Imputed value: 2.1433

rwi Numeric 0 0 Missing Values Imputed Imputed value: -0.265

4 Model Summary and Description

The particular model referenced in this document: LightGBM Random Forest Classifier. This model

was developed in a project created with vb754f77d02337f3d of DataRobot. This model is denoted

within DataRobot by the Project ID: 63fbd44ff0eafeaf83c6320f and the Model ID:

640ba44a889ec21491ac5bb7. The project was created on 2023-02-26 21:51:11.

The model development workflow process (i.e., the model blueprint) is detailed in the figure below.

A Blueprint represents the high-level end-to-end procedure for fitting the model, including any

preprocessing steps, algorithms, and post-processing. It illustrates the many steps involved in

transforming input predictors and targets into a model. Each element (or, “node”) in a blueprint can

represent multiple steps.

The following elements connect to create the blueprint:

• Ordinal encoding of categorical variables

• Category Count

• Missing Values Imputed

• LightGBM Random Forest Classifier

5 Feature Effects

pay_clean

bgs_recharge

age_in_years

6 Feature Impact Chart

7 Feature Impact Table

Feature Name Impact Normalized Impact Unnormalized

pay_clean 1.0 0.0472

bgs_recharge 0.9658 0.0456

age_in_years 0.7926 0.0374

assigned_population 0.733 0.0346

management_clean 0.7306 0.0345

subjective_quality_clean 0.6852 0.0323

precipitation_10year 0.6561 0.031

crucialness 0.652 0.0308

precipitation_5year 0.6471 0.0306

water_risk 0.4923 0.0232

water_tech_clean 0.4498 0.0212

pressure 0.4133 0.0195

water_tech_category 0.3985 0.0188

distance_to_city 0.3977 0.0188

water_source_clean 0.3409 0.0161

men_ratio_1km 0.2907 0.0137

distance_to_primary 0.2876 0.0136

local_population 0.2761 0.013

women_of_reproductive_age_ratio_1km 0.2657 0.0125

acled_index 0.2599 0.0123

distance_to_town 0.255 0.012

distance_to_secondary 0.2435 0.0115

youth_ratio_1km 0.2377 0.0112

distance_to_tertiary 0.2228 0.0105

population_1km 0.2209 0.0104

water_source_category 0.2196 0.0104

rwi 0.1821 0.0086

elderly_ratio_1km 0.1623 0.0077

children_under_five_ratio_1km 0.1544 0.0073

orig_status_id 0.1172 0.0055

population_10km 0.067 0.0032

men_ratio_10km 0.0566 0.0027

women_of_reproductive_age_ratio_10km 0.0202 0.001

population_100km 0.01 0.0005

youth_ratio_100km 0.0 0.0

8 Validation Testing and Stability

To find patterns in a dataset from which it can make predictions, an algorithm must first learn from

a historical example – typically from a historical dataset that contains the output variable you want

to predict. However, if a model is trained too closely on its training data then it may be overfit.

Overfitting is a modeling error that occurs when a model is too closely fit to training data and

therefore performs poorly on out-of-sample data (data that was not used to train the model).

Overfitting generally results in an overly complex model that explains idiosyncrasies and random

noise in the training data, rather than the underlying trends that the model was intended to

capture. To avoid overfitting, the best practice is to evaluate model performance on out-of-sample

data. If the model performs very well on in-sample data, (the training data) but poorly on out-of-

sample data, that may be an indication that the model is overfit.

DataRobot uses standard modeling techniques to validate model performance and ensure that

overfitting does not occur. DataRobot used a robust model k-fold cross-validation framework to

test the out-of-sample stability of a model's performance. In addition to cross-validation

partitioning, DataRobot uses a holdout sample to further test out-of-sample model performance

and ensure the model is not overfit.

The following procedure was used during development to insure that overfitting did not occur:

• All values of the feature "fold" represent separate partitions used for cross-validation

DataRobot calculates the Cross Validation scores for each of the training data partitions or folds.

The project metric used to calculate the score is LogLoss.

8.1 Cross Validation Scores
Fold Cross Validation Score (LogLoss)

Fold 1 0.36521

Fold 2 0.36718

Fold 3 0.3673

Fold 4 0.36411

Fold 5 0.36244

9 Model Results

DataRobot runs performance testing during the model development process to evaluate model

results and reliability. The validation, cross-validation, and holdout (if applicable) out-of-sample

performance scores are presented below, as well as the number of observations for each partition.

The performance metric used for this project was LogLoss and the project included a total of

316,503 observations. An asterisk (*) next to a score, whether validation or holdout, indicates that

DataRobot used in-sample predictions to derive the score. (In-samples predictions are those that

include data from the validation or holdout partitions due to sample size used to build the model.)

Scoring Type Score (LogLoss)

cross_validation 0.3652*

holdout 0.3039*

validation 0.3652*

10 Bias and Fairness

The Bias & Fairness feature is not a legal compliance tool. Please carefully review the product

Documentation to ensure that you fully understand the functionality of the feature before using it.

DataRobot recommends that you take local legal advice where you wish to rely on the results of this

feature for complying with any legal obligations. Product Documentation can be found here:

https://app.datarobot.comdocs/modeling/special-workflows/b-and-f/index.html

DataRobot's Bias and Fairness testing identifies whether the model exhibits biased behavior

towards any classes in the dataset's protected features, based on the selected definition of fairness.

Protected features and the fairness metric are chosen before Autopilot is started. DataRobot also

provides a workflow that guides you towards an appropriate definition of fairness for the specific

use case.

DataRobot's Bias and Fairness feature includes two model-level insights:

• Per-Class Bias, which shows whether the model is treating certain protected groups differently

as measured by the selected fairness metric. This identifies if there is biased behavior, and if so,

how that bias manifests, but not why.

• Cross-Class Data Disparity, which shows how different protected classes differ in their data

distribution. This offers deeper insight into why the model is treating groups differently.

Together, these insights can help identify potential mitigation strategies for bias in the dataset and

model, such as improving data collection or data sampling for specific groups.

Bias and Fairness testing was used in this project. The selected protected features were

clean_country_id. The favorable target outcome was No. The selected fairness metric was

favorableAndUnfavorablePredictiveValueParity. The fairness threshold was set at 0.8.

Favorable Predictive Value & Unfavorable Predictive Value Parity (also known as Precision and

NPV Parity) measure fairness by Equal Error, and it is best suited for cases when the target is

severely unbalanced. These metrics measure whether your model disproportionally discovers

favorable cases or omits unfavorable cases correctly for any particular group. It is calculated

relative to the model's predictions–-the proportion of predicted favorable or predicted unfavorable

cases that are classified correctly. Unlike True Favorable and Unfavorable Rate Parity, Favorable

Predictive Value & Unfavorable Predictive Value Parity are calculated relative to the predicted class,

rather than the ground truth, which allows it to capture more meaningful information when there

are very few predictions for a certain class, such as in imbalanced datasets. Higher values for

Favorable Predictive Value and Unfavorable Predictive Value mean that the model is more accurate

for that class relative to that metric. It's important to measure both Favorable Predictive Value &

https://app.datarobot.comdocs/modeling/special-workflows/b-and-f/index.html

Unfavorable Predictive Value Parity together, because poor performance in either one can lead to

biased outcomes, often for different stakeholders. These metrics will help you investigate how your

model balances both of these types of accuracy across your protected classes.

The Per-Class Bias graph shows whether the model exhibits biased behavior across protected

features. The top fairness score across each protected class is scaled to 1.0, and the fairness scores

for every other class are scaled relative to that value. If the fairness score for a class crosses the

selected fairness threshold, the bar for that class is shown in red. If DataRobot used in-sample

predictions to derive the model's performance scores (see Overview of Model Results), the

fairness scores were calculated using in-sample validation data.

If there is not enough data for a class, its score is still calculated, but the bar for that class is shown

in gray. The heuristic for whether a class does not have enough data is the following:

• If the class has <100 rows in the validation data, then it does not have enough data.

• If the class has between 100 and 1,000 rows in the validation data, but has fewer than <10% of

the rows of the majority class, then it does not have enough data.

• If the class has >1,000 rows, then it has enough data.

The following figure is the Per-Class Bias graph for each protected feature in this project:

clean_country_id

