
1   How To Use This Document 

Highly regulated industries, such as banking and insurance, must comply with government 

regulations for model validation before a model can be put into production. This includes creating 

robust model development documentation. DataRobot automates the generation of model 

documentation, expediting the process required for regulatory compliance and following best 

practice for reducing model risk. 

This document is split into two components: those sections that are automatically produced by 

DataRobot and those that require further input by the user. The sections in blue italicized font 

include specific instructions for the documenter and require additional user input of organization-

specific information, such as business use cases, data sources, and implementation details. Once the 

sections are complete, remove the instructions. The remaining sections in non-blue italicized font 

are automatically populated by DataRobot and require no further input. 
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2   Model Performance Overview 

As an additional layer of model validity, DataRobot not only evaluated the statistical metrics 

underlying the model, but also performed testing on in-sample records. 

The performance metric used for this project was LogLoss. The model performance results are 

presented below for in-sample testing: 

Scoring Type Score (LogLoss) 

cross_validation 0.3652* 

holdout 0.3039* 

validation 0.3652* 

3   Model Features Summary 

Below are two tables. The first contains a list of the final set of model feature variables, as well as 

summary statistics for the LightGBM Random Forest Classifier model. The second table contains a 

detailed analysis of missing values. 

The Model Features and Summary Statistics table provides a brief overview of the summary 

statistics of model features. This includes Feature Name, variable type (Var Type), number of 

unique values (Unique), Number of missing values (Missing), Mean, Standard Deviation (Std Dev), 

Median, Minimum Value (Min), Maximum Value (Max) and Assessment of target leakage risk 

(Target Leakage). 

3.1   Model Features and Summary Statistics 
Feature Name Var Type Unique Missing Mean Std Dev Median Min Max Target 

Leakage 

water_tech_clean Categorical 29 77839 N/A N/A N/A N/A N/A Low 

water_source_clean Categorical 12 21944 N/A N/A N/A N/A N/A Low 

water_tech_category Categorical 4 77839 N/A N/A N/A N/A N/A Low 

water_source_category Categorical 6 21944 N/A N/A N/A N/A N/A Low 

management_clean Categorical 9 71110 N/A N/A N/A N/A N/A Low 

pay_clean Categorical 9 180039 N/A N/A N/A N/A N/A Low 

subjective_quality_clean Categorical 5 179116 N/A N/A N/A N/A N/A Low 

age_in_years Numeric 16654 5112 10.304 11.0009 6.63 -29.99 115.38 Low 

distance_to_primary Numeric 247831 0 19800.29 24692.39 11990.36 0.0065 249271.072 Low 



distance_to_secondary Numeric 247831 0 9803.074 12624.29 5457.99 0.016 164233.93 Low 

distance_to_tertiary Numeric 247831 0 3896.92 5590.17 1816.59 0.0096 86007.508 Low 

distance_to_city Numeric 247401 1147 51982.75 41989.75 41192.14 12.12 350229.88 Low 

distance_to_town Numeric 247831 0 17249.43 14207.83 13913.68 3.8 136251.203 Low 

precipitation_5year Numeric 2926 57514 1410.89 934.87 1210.93 160.84 12236.03 Low 

precipitation_10year Numeric 2914 57514 1426.76 935.36 1228.21 172.63 12589.39 Low 

acled_index Numeric 382 1595 24.78 75.083 3.0 0.0 4065.0 Low 

bgs_recharge Numeric 2799 17025 96.78 44.94 92.28 0.0 242.74 Low 

water_risk Numeric 693 0 2.304 0.84 2.14 -1.0 4.75 Low 

rwi Numeric 1508 0 -0.21 0.39 -0.27 -1.36 1.87 Low 

assigned_population Numeric 7804 8963 649.27 2327.94 268.0 0.0 379506.0 Low 

local_population Numeric 22000 8963 3703.034 7720.87 1345.0 0.0 379506.0 Low 

pressure Numeric 13072 14285 2.25 6.13 1.01 0.001 722.86 Low 

crucialness Numeric 157152 14179 0.35 0.32 0.23 0.0003 1.0 Low 

population_1km Numeric 171262 11085 3689.54 7955.99 1255.097 -0.0 358831.44 Low 

men_ratio_1km Numeric 60636 11085 0.49 0.67 0.49 -37.0 155.53 Low 

women_of_reproductive_age_ratio_1km Numeric 61122 11085 0.24 0.34 0.24 -41.044 105.29 Low 

youth_ratio_1km Numeric 50873 11085 0.2 0.33 0.203 -91.75 64.25 Low 

elderly_ratio_1km Numeric 57937 11085 0.053 0.076 0.049 -20.36 24.69 Low 

children_under_five_ratio_1km Numeric 54834 11085 0.16 0.16 0.17 -39.0 26.0 Low 

population_10km Numeric 120342 11085 127448.43 266026.65 65527.38 -0.0 9830356.0 Low 

men_ratio_10km Numeric 104025 11085 0.49 0.036 0.49 -5.5 5.5 Low 

women_of_reproductive_age_ratio_10km Numeric 105518 11085 0.24 0.022 0.24 -1.0 2.5 Low 

population_100km Numeric 14001 11083 5554633.48 4424416.34 4330562.0 37718.29 58837100.0 Low 

youth_ratio_100km Numeric 13920 11083 0.2 0.013 0.203 0.16 0.26 Low 

orig_status_id Categorical 2 0 N/A N/A N/A N/A N/A Low 

The last column in this table is an assessment of target leakage risk. DataRobot automatically tests 

for target leakage on a per-feature basis during the Autopilot process. Target leakage, sometimes 

called data leakage, occurs when a model is trained using a dataset that includes information that 

would not be available at the time of prediction. This can produce overly optimistic model 

performance results during training, given a feature will near-completely describe the target (e.g., 

the number of late payments on a loan as a predictor for loan default at loan application date.) 

DataRobot tests for target leakage risk using Alternating Conditional Expectation (ACE) to measure 

the association between each feature and the target; the ACE score is normalized using the project 

optimization metric so that its value is in the range [0,1]. If above a certain threshold (see below), 

DataRobot will create a new feature list with those features flagged and possibly removed, and the 



user is notified by a banner in the user interface during modeling. Notably, because the definition of 

target leakage is directly tied with prediction time and not strength of association between a 

feature and the target, it's possible for DataRobot to not identify all sources of target leakage. 

Therefore, to reduce the risk for potential target leakage in the feature list, it's important to apply 

subject matter expertise. 

The thresholds for target leakage risk are based on a normalized ACE score: 

• High risk: > 0.975, flagged and removed 

• Moderate risk: > 0.85, flagged but not removed 

• Low risk: < 0.85, no action 

The following table provides a summary of missing values. It includes the name of the feature, its 

type, a summary of the missing value count (both number of rows and as a percentage), and 

information on the type of imputation applied to the feature. 

3.2   Data Quality Handling Report 
Feature Name Var Type Missing Count Missing Percentage Imputation Name Imputation Description 

subjective_quality_clean Categorical 214044 68 Ordinal encoding of 

categorical variables 

Imputed value: -2 

pay_clean Categorical 213754 68 Ordinal encoding of 

categorical variables 

Imputed value: -2 

water_tech_clean Categorical 90574 29 Ordinal encoding of 

categorical variables 

Imputed value: -2 

water_tech_category Categorical 90574 29 Ordinal encoding of 

categorical variables 

Imputed value: -2 

management_clean Categorical 86912 27 Ordinal encoding of 

categorical variables 

Imputed value: -2 

precipitation_5year Numeric 68024 21 Missing Values Imputed Imputed value: -9999 

precipitation_10year Numeric 68024 21 Missing Values Imputed Imputed value: -9999 

water_source_clean Categorical 29908 9 Ordinal encoding of 

categorical variables 

Imputed value: -2 

water_source_category Categorical 29908 9 Ordinal encoding of 

categorical variables 

Imputed value: -2 

bgs_recharge Numeric 20017 6 Missing Values Imputed Imputed value: -9999 

pressure Numeric 18425 6 Missing Values Imputed Imputed value: -9999 

crucialness Numeric 18302 6 Missing Values Imputed Imputed value: -9999 

population_1km Numeric 13033 4 Missing Values Imputed Imputed value: -9999 

men_ratio_1km Numeric 13033 4 Missing Values Imputed Imputed value: -9999 

women_of_reproductive_age_ratio_1km Numeric 13033 4 Missing Values Imputed Imputed value: -9999 

youth_ratio_1km Numeric 13033 4 Missing Values Imputed Imputed value: -9999 



elderly_ratio_1km Numeric 13033 4 Missing Values Imputed Imputed value: -9999 

children_under_five_ratio_1km Numeric 13033 4 Missing Values Imputed Imputed value: -9999 

population_10km Numeric 13033 4 Missing Values Imputed Imputed value: -9999 

men_ratio_10km Numeric 13033 4 Missing Values Imputed Imputed value: -9999 

women_of_reproductive_age_ratio_10km Numeric 13033 4 Missing Values Imputed Imputed value: -9999 

population_100km Numeric 13031 4 Missing Values Imputed Imputed value: -9999 

youth_ratio_100km Numeric 13031 4 Missing Values Imputed Imputed value: -9999 

assigned_population Numeric 12705 4 Missing Values Imputed Imputed value: -9999 

local_population Numeric 12705 4 Missing Values Imputed Imputed value: -9999 

age_in_years Numeric 6528 2 Missing Values Imputed Imputed value: -9999 

acled_index Numeric 1871 1 Missing Values Imputed Imputed value: -9999 

distance_to_city Numeric 1147 0 Missing Values Imputed Imputed value: -9999 

orig_status_id Categorical 0 0 Ordinal encoding of 

categorical variables 

Imputed value: -2 

distance_to_primary Numeric 0 0 Missing Values Imputed Imputed value: 

12392.117 

distance_to_secondary Numeric 0 0 Missing Values Imputed Imputed value: 

5511.5679 

distance_to_tertiary Numeric 0 0 Missing Values Imputed Imputed value: 

1787.7548 

distance_to_town Numeric 0 0 Missing Values Imputed Imputed value: 

14049.666 

water_risk Numeric 0 0 Missing Values Imputed Imputed value: 2.1433 

rwi Numeric 0 0 Missing Values Imputed Imputed value: -0.265 

4   Model Summary and Description 

The particular model referenced in this document: LightGBM Random Forest Classifier. This model 

was developed in a project created with vb754f77d02337f3d of DataRobot. This model is denoted 

within DataRobot by the Project ID: 63fbd44ff0eafeaf83c6320f and the Model ID: 

640ba44a889ec21491ac5bb7. The project was created on 2023-02-26 21:51:11. 

The model development workflow process (i.e., the model blueprint) is detailed in the figure below. 



 

A Blueprint represents the high-level end-to-end procedure for fitting the model, including any 

preprocessing steps, algorithms, and post-processing. It illustrates the many steps involved in 

transforming input predictors and targets into a model. Each element (or, “node”) in a blueprint can 

represent multiple steps. 

The following elements connect to create the blueprint: 

• Ordinal encoding of categorical variables 

• Category Count 

• Missing Values Imputed 

• LightGBM Random Forest Classifier 



5   Feature Effects 
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6   Feature Impact Chart 

 

7   Feature Impact Table 

Feature Name Impact Normalized Impact Unnormalized 

pay_clean 1.0 0.0472 

bgs_recharge 0.9658 0.0456 

age_in_years 0.7926 0.0374 

assigned_population 0.733 0.0346 

management_clean 0.7306 0.0345 

subjective_quality_clean 0.6852 0.0323 

precipitation_10year 0.6561 0.031 

crucialness 0.652 0.0308 



precipitation_5year 0.6471 0.0306 

water_risk 0.4923 0.0232 

water_tech_clean 0.4498 0.0212 

pressure 0.4133 0.0195 

water_tech_category 0.3985 0.0188 

distance_to_city 0.3977 0.0188 

water_source_clean 0.3409 0.0161 

men_ratio_1km 0.2907 0.0137 

distance_to_primary 0.2876 0.0136 

local_population 0.2761 0.013 

women_of_reproductive_age_ratio_1km 0.2657 0.0125 

acled_index 0.2599 0.0123 

distance_to_town 0.255 0.012 

distance_to_secondary 0.2435 0.0115 

youth_ratio_1km 0.2377 0.0112 

distance_to_tertiary 0.2228 0.0105 

population_1km 0.2209 0.0104 

water_source_category 0.2196 0.0104 

rwi 0.1821 0.0086 

elderly_ratio_1km 0.1623 0.0077 

children_under_five_ratio_1km 0.1544 0.0073 

orig_status_id 0.1172 0.0055 

population_10km 0.067 0.0032 

men_ratio_10km 0.0566 0.0027 

women_of_reproductive_age_ratio_10km 0.0202 0.001 

population_100km 0.01 0.0005 

youth_ratio_100km 0.0 0.0 

8   Validation Testing and Stability 

To find patterns in a dataset from which it can make predictions, an algorithm must first learn from 

a historical example – typically from a historical dataset that contains the output variable you want 

to predict. However, if a model is trained too closely on its training data then it may be overfit. 

Overfitting is a modeling error that occurs when a model is too closely fit to training data and 

therefore performs poorly on out-of-sample data (data that was not used to train the model). 



Overfitting generally results in an overly complex model that explains idiosyncrasies and random 

noise in the training data, rather than the underlying trends that the model was intended to 

capture. To avoid overfitting, the best practice is to evaluate model performance on out-of-sample 

data. If the model performs very well on in-sample data, (the training data) but poorly on out-of-

sample data, that may be an indication that the model is overfit. 

DataRobot uses standard modeling techniques to validate model performance and ensure that 

overfitting does not occur. DataRobot used a robust model k-fold cross-validation framework to 

test the out-of-sample stability of a model's performance. In addition to cross-validation 

partitioning, DataRobot uses a holdout sample to further test out-of-sample model performance 

and ensure the model is not overfit. 

The following procedure was used during development to insure that overfitting did not occur: 

• All values of the feature "fold" represent separate partitions used for cross-validation  

DataRobot calculates the Cross Validation scores for each of the training data partitions or folds. 

The project metric used to calculate the score is LogLoss. 

8.1   Cross Validation Scores 
Fold Cross Validation Score (LogLoss) 

Fold 1 0.36521 

Fold 2 0.36718 

Fold 3 0.3673 

Fold 4 0.36411 

Fold 5 0.36244 

9   Model Results 

DataRobot runs performance testing during the model development process to evaluate model 

results and reliability. The validation, cross-validation, and holdout (if applicable) out-of-sample 

performance scores are presented below, as well as the number of observations for each partition. 

The performance metric used for this project was LogLoss and the project included a total of 

316,503 observations. An asterisk (*) next to a score, whether validation or holdout, indicates that 

DataRobot used in-sample predictions to derive the score. (In-samples predictions are those that 

include data from the validation or holdout partitions due to sample size used to build the model.) 

Scoring Type Score (LogLoss) 

cross_validation 0.3652* 

holdout 0.3039* 



validation 0.3652* 

 

10   Bias and Fairness 

The Bias & Fairness feature is not a legal compliance tool. Please carefully review the product 

Documentation to ensure that you fully understand the functionality of the feature before using it. 

DataRobot recommends that you take local legal advice where you wish to rely on the results of this 

feature for complying with any legal obligations. Product Documentation can be found here: 

https://app.datarobot.comdocs/modeling/special-workflows/b-and-f/index.html 

DataRobot's Bias and Fairness testing identifies whether the model exhibits biased behavior 

towards any classes in the dataset's protected features, based on the selected definition of fairness. 

Protected features and the fairness metric are chosen before Autopilot is started. DataRobot also 

provides a workflow that guides you towards an appropriate definition of fairness for the specific 

use case. 

DataRobot's Bias and Fairness feature includes two model-level insights: 

• Per-Class Bias, which shows whether the model is treating certain protected groups differently 

as measured by the selected fairness metric. This identifies if there is biased behavior, and if so, 

how that bias manifests, but not why. 

• Cross-Class Data Disparity, which shows how different protected classes differ in their data 

distribution. This offers deeper insight into why the model is treating groups differently. 

Together, these insights can help identify potential mitigation strategies for bias in the dataset and 

model, such as improving data collection or data sampling for specific groups. 

Bias and Fairness testing was used in this project. The selected protected features were 

clean_country_id. The favorable target outcome was No. The selected fairness metric was 

favorableAndUnfavorablePredictiveValueParity. The fairness threshold was set at 0.8. 

Favorable Predictive Value & Unfavorable Predictive Value Parity (also known as Precision and 

NPV Parity) measure fairness by Equal Error, and it is best suited for cases when the target is 

severely unbalanced. These metrics measure whether your model disproportionally discovers 

favorable cases or omits unfavorable cases correctly for any particular group. It is calculated 

relative to the model's predictions–-the proportion of predicted favorable or predicted unfavorable 

cases that are classified correctly. Unlike True Favorable and Unfavorable Rate Parity, Favorable 

Predictive Value & Unfavorable Predictive Value Parity are calculated relative to the predicted class, 

rather than the ground truth, which allows it to capture more meaningful information when there 

are very few predictions for a certain class, such as in imbalanced datasets. Higher values for 

Favorable Predictive Value and Unfavorable Predictive Value mean that the model is more accurate 

for that class relative to that metric. It's important to measure both Favorable Predictive Value & 

https://app.datarobot.comdocs/modeling/special-workflows/b-and-f/index.html


Unfavorable Predictive Value Parity together, because poor performance in either one can lead to 

biased outcomes, often for different stakeholders. These metrics will help you investigate how your 

model balances both of these types of accuracy across your protected classes. 

The Per-Class Bias graph shows whether the model exhibits biased behavior across protected 

features. The top fairness score across each protected class is scaled to 1.0, and the fairness scores 

for every other class are scaled relative to that value. If the fairness score for a class crosses the 

selected fairness threshold, the bar for that class is shown in red. If DataRobot used in-sample 

predictions to derive the model's performance scores (see Overview of Model Results), the 

fairness scores were calculated using in-sample validation data. 

If there is not enough data for a class, its score is still calculated, but the bar for that class is shown 

in gray. The heuristic for whether a class does not have enough data is the following: 

• If the class has <100 rows in the validation data, then it does not have enough data. 

• If the class has between 100 and 1,000 rows in the validation data, but has fewer than <10% of 

the rows of the majority class, then it does not have enough data. 

• If the class has >1,000 rows, then it has enough data. 

The following figure is the Per-Class Bias graph for each protected feature in this project: 

clean_country_id 

 

 


