
1   How To Use This Document 

Highly regulated industries, such as banking and insurance, must comply with government 

regulations for model validation before a model can be put into production. This includes creating 

robust model development documentation. DataRobot automates the generation of model 

documentation, expediting the process required for regulatory compliance and following best 

practice for reducing model risk. 

This document is split into two components: those sections that are automatically produced by 

DataRobot and those that require further input by the user. The sections in blue italicized font 

include specific instructions for the documenter and require additional user input of organization-

specific information, such as business use cases, data sources, and implementation details. Once the 

sections are complete, remove the instructions. The remaining sections in non-blue italicized font 

are automatically populated by DataRobot and require no further input. 
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2   Model Performance Overview 

As an additional layer of model validity, DataRobot not only evaluated the statistical metrics 

underlying the model, but also performed testing on in-sample records. 

The performance metric used for this project was LogLoss. The model performance results are 

presented below for in-sample testing: 

Scoring Type Score (LogLoss) 

cross_validation 0.3616* 

holdout 0.0229* 

validation 0.3633* 

3   Model Features Summary 

Below are two tables. The first contains a list of the final set of model feature variables, as well as 

summary statistics for the eXtreme Gradient Boosted Trees Classifier with Early Stopping (learning 

rate =0.02) model. The second table contains a detailed analysis of missing values. 

The Model Features and Summary Statistics table provides a brief overview of the summary 

statistics of model features. This includes Feature Name, variable type (Var Type), number of 

unique values (Unique), Number of missing values (Missing), Mean, Standard Deviation (Std Dev), 

Median, Minimum Value (Min), Maximum Value (Max) and Assessment of target leakage risk 

(Target Leakage). 

3.1   Model Features and Summary Statistics 
Feature Name Var Type Unique Missing Mean Std Dev Median Min Max Target 

Leakage 

water_tech_clean Categorical 19 6743 N/A N/A N/A N/A N/A Low 

water_source_clean Categorical 10 4224 N/A N/A N/A N/A N/A Low 

management_clean Categorical 9 576 N/A N/A N/A N/A N/A Low 

age_in_years Numeric 4898 26 9.96 10.93 5.5 -10.0043 86.83 Low 

distance_to_city Numeric 19622 0 31890.56 32610.72 17324.42 82.604 140207.46 Low 

local_population Numeric 6529 2967 7313.56 13104.7 2514.0 0.0 78465.0 Low 

population_1km Numeric 11283 0 8227.35 14024.97 3059.017 -0.0 69122.89 Low 

women_of_reproductive_age_ratio_1km Numeric 2569 0 0.26 0.014 0.26 -0.0 0.28 Low 

youth_ratio_1km Numeric 2420 0 0.203 0.021 0.19 -0.013 0.23 Low 



women_of_reproductive_age_ratio_10km Numeric 5588 0 0.26 0.014 0.26 0.22 0.28 Low 

youth_ratio_10km Numeric 5477 0 0.203 0.0205 0.19 0.17 0.23 Low 

children_under_five_ratio_10km Numeric 5455 0 0.14 0.021 0.16 0.12 0.17 Low 

men_ratio_100km Numeric 656 0 0.49 0.0064 0.49 0.47 0.5 Low 

women_of_reproductive_age_ratio_100km Numeric 655 0 0.26 0.0077 0.26 0.23 0.27 Low 

youth_ratio_100km Numeric 655 0 0.2 0.012 0.19 0.17 0.22 Low 

elderly_ratio_100km Numeric 656 0 0.068 0.0042 0.07 0.0603 0.076 Low 

children_under_five_ratio_100km Numeric 656 0 0.15 0.013 0.16 0.12 0.17 Low 

years_since_report Numeric 4003 0 8.76 11.062 4.59 -10.0043 86.83 Low 

The last column in this table is an assessment of target leakage risk. DataRobot automatically tests 

for target leakage on a per-feature basis during the Autopilot process. Target leakage, sometimes 

called data leakage, occurs when a model is trained using a dataset that includes information that 

would not be available at the time of prediction. This can produce overly optimistic model 

performance results during training, given a feature will near-completely describe the target (e.g., 

the number of late payments on a loan as a predictor for loan default at loan application date.) 

DataRobot tests for target leakage risk using Alternating Conditional Expectation (ACE) to measure 

the association between each feature and the target; the ACE score is normalized using the project 

optimization metric so that its value is in the range [0,1]. If above a certain threshold (see below), 

DataRobot will create a new feature list with those features flagged and possibly removed, and the 

user is notified by a banner in the user interface during modeling. Notably, because the definition of 

target leakage is directly tied with prediction time and not strength of association between a 

feature and the target, it's possible for DataRobot to not identify all sources of target leakage. 

Therefore, to reduce the risk for potential target leakage in the feature list, it's important to apply 

subject matter expertise. 

The thresholds for target leakage risk are based on a normalized ACE score: 

• High risk: > 0.975, flagged and removed 

• Moderate risk: > 0.85, flagged but not removed 

• Low risk: < 0.85, no action 

The following table provides a summary of missing values. It includes the name of the feature, its 

type, a summary of the missing value count (both number of rows and as a percentage), and 

information on the type of imputation applied to the feature. 

3.2   Data Quality Handling Report 
Feature Name Var Type Missing Count Missing Percentage Imputation Name Imputation Description 

water_tech_clean Categorical 8611 26 Ordinal encoding of 

categorical variables 

Imputed value: -2 



water_source_clean Categorical 7123 22 Ordinal encoding of 

categorical variables 

Imputed value: -2 

local_population Numeric 3650 11 Missing Values Imputed Imputed value: -9999 

management_clean Categorical 579 2 Ordinal encoding of 

categorical variables 

Imputed value: -2 

age_in_years Numeric 43 0 Missing Values Imputed Imputed value: -9999 

distance_to_city Numeric 0 0 Missing Values Imputed Imputed value: 

11852.693 

population_1km Numeric 0 0 Missing Values Imputed Imputed value: 

3905.7463 

women_of_reproductive_age_ratio_1km Numeric 0 0 Missing Values Imputed Imputed value: 0.2628 

youth_ratio_1km Numeric 0 0 Missing Values Imputed Imputed value: 0.1928 

women_of_reproductive_age_ratio_10km Numeric 0 0 Missing Values Imputed Imputed value: 0.2624 

youth_ratio_10km Numeric 0 0 Missing Values Imputed Imputed value: 0.1927 

children_under_five_ratio_10km Numeric 0 0 Missing Values Imputed Imputed value: 0.1562 

men_ratio_100km Numeric 0 0 Missing Values Imputed Imputed value: 0.4854 

women_of_reproductive_age_ratio_100km Numeric 0 0 Missing Values Imputed Imputed value: 0.2634 

youth_ratio_100km Numeric 0 0 Missing Values Imputed Imputed value: 0.208 

elderly_ratio_100km Numeric 0 0 Missing Values Imputed Imputed value: 0.0718 

children_under_five_ratio_100km Numeric 0 0 Missing Values Imputed Imputed value: 0.1372 

years_since_report Numeric 0 0 Missing Values Imputed Imputed value: 2.7571 

4   Model Summary and Description 

The particular model referenced in this document: eXtreme Gradient Boosted Trees Classifier with 

Early Stopping (learning rate =0.02). This model was developed in a project created with 

v7686f5bec5c9e5ac of DataRobot. This model is denoted within DataRobot by the Project ID: 

63ff9a625bbdbb837a8d124d and the Model ID: 640966ced23c55a6d6fdfa3d. The project was 

created on 2023-03-01 18:33:06. 

The model development workflow process (i.e., the model blueprint) is detailed in the figure below. 



 

A Blueprint represents the high-level end-to-end procedure for fitting the model, including any 

preprocessing steps, algorithms, and post-processing. It illustrates the many steps involved in 

transforming input predictors and targets into a model. Each element (or, “node”) in a blueprint can 

represent multiple steps. 

The following elements connect to create the blueprint: 

• Ordinal encoding of categorical variables 

• Missing Values Imputed 

• eXtreme Gradient Boosted Trees Classifier with Early Stopping (learning rate =0.02) 



5   Feature Effects 
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6   Feature Impact Chart 

 

7   Feature Impact Table 

Feature Name Impact Normalized Impact Unnormalized 

management_clean 1.0 0.0702 

years_since_report 0.9894 0.0695 

age_in_years 0.6905 0.0485 

water_tech_clean 0.6494 0.0456 

distance_to_city 0.5178 0.0364 

population_1km 0.5127 0.036 

water_source_clean 0.4814 0.0338 

women_of_reproductive_age_ratio_10km 0.4053 0.0285 



local_population 0.3285 0.0231 

youth_ratio_10km 0.2664 0.0187 

women_of_reproductive_age_ratio_1km 0.235 0.0165 

elderly_ratio_100km 0.2269 0.0159 

women_of_reproductive_age_ratio_100km 0.2249 0.0158 

children_under_five_ratio_10km 0.2194 0.0154 

youth_ratio_1km 0.2052 0.0144 

men_ratio_100km 0.1962 0.0138 

youth_ratio_100km 0.1887 0.0133 

children_under_five_ratio_100km 0.1711 0.012 

8   Validation Testing and Stability 

To find patterns in a dataset from which it can make predictions, an algorithm must first learn from 

a historical example – typically from a historical dataset that contains the output variable you want 

to predict. However, if a model is trained too closely on its training data then it may be overfit. 

Overfitting is a modeling error that occurs when a model is too closely fit to training data and 

therefore performs poorly on out-of-sample data (data that was not used to train the model). 

Overfitting generally results in an overly complex model that explains idiosyncrasies and random 

noise in the training data, rather than the underlying trends that the model was intended to 

capture. To avoid overfitting, the best practice is to evaluate model performance on out-of-sample 

data. If the model performs very well on in-sample data, (the training data) but poorly on out-of-

sample data, that may be an indication that the model is overfit. 

DataRobot uses standard modeling techniques to validate model performance and ensure that 

overfitting does not occur. DataRobot used a robust model k-fold cross-validation framework to 

test the out-of-sample stability of a model's performance. In addition to cross-validation 

partitioning, DataRobot uses a holdout sample to further test out-of-sample model performance 

and ensure the model is not overfit. 

The following procedure was used during development to insure that overfitting did not occur: 

• All values of the feature "fold" represent separate partitions used for cross-validation  

DataRobot calculates the Cross Validation scores for each of the training data partitions or folds. 

The project metric used to calculate the score is LogLoss. 

8.1   Cross Validation Scores 
Fold Cross Validation Score (LogLoss) 



Fold 1 0.36334 

Fold 2 0.36268 

Fold 3 0.36475 

Fold 4 0.35946 

Fold 5 0.35799 

9   Model Results 

DataRobot runs performance testing during the model development process to evaluate model 

results and reliability. The validation, cross-validation, and holdout (if applicable) out-of-sample 

performance scores are presented below, as well as the number of observations for each partition. 

The performance metric used for this project was LogLoss and the project included a total of 32,866 

observations. An asterisk (*) next to a score, whether validation or holdout, indicates that 

DataRobot used in-sample predictions to derive the score. (In-samples predictions are those that 

include data from the validation or holdout partitions due to sample size used to build the model.) 

Scoring Type Score (LogLoss) 

cross_validation 0.3616* 

holdout 0.0229* 

validation 0.3633* 

 

10 Bias and Fairness 

The Bias & Fairness feature is not a legal compliance tool. Please carefully review the product 

Documentation to ensure that you fully understand the functionality of the feature before using it. 

DataRobot recommends that you take local legal advice where you wish to rely on the results of this 

feature for complying with any legal obligations. Product Documentation can be found here: 

https://app.datarobot.comdocs/modeling/special-workflows/b-and-f/index.html 

DataRobot's Bias and Fairness testing identifies whether the model exhibits biased behavior 

towards any classes in the dataset's protected features, based on the selected definition of fairness. 

Protected features and the fairness metric are chosen before Autopilot is started. DataRobot also 

provides a workflow that guides you towards an appropriate definition of fairness for the specific 

use case. 

DataRobot's Bias and Fairness feature includes two model-level insights: 

https://app.datarobot.comdocs/modeling/special-workflows/b-and-f/index.html


• Per-Class Bias, which shows whether the model is treating certain protected groups differently 

as measured by the selected fairness metric. This identifies if there is biased behavior, and if so, 

how that bias manifests, but not why. 

• Cross-Class Data Disparity, which shows how different protected classes differ in their data 

distribution. This offers deeper insight into why the model is treating groups differently. 

Together, these insights can help identify potential mitigation strategies for bias in the dataset and 

model, such as improving data collection or data sampling for specific groups. 

Bias and Fairness testing was used in this project. The selected protected features were 

clean_adm1. The favorable target outcome was No. The selected fairness metric was 

favorableAndUnfavorablePredictiveValueParity. The fairness threshold was set at 0.8. 

Favorable Predictive Value & Unfavorable Predictive Value Parity (also known as Precision and 

NPV Parity) measure fairness by Equal Error, and it is best suited for cases when the target is 

severely unbalanced. These metrics measure whether your model disproportionally discovers 

favorable cases or omits unfavorable cases correctly for any particular group. It is calculated 

relative to the model's predictions–-the proportion of predicted favorable or predicted unfavorable 

cases that are classified correctly. Unlike True Favorable and Unfavorable Rate Parity, Favorable 

Predictive Value & Unfavorable Predictive Value Parity are calculated relative to the predicted class, 

rather than the ground truth, which allows it to capture more meaningful information when there 

are very few predictions for a certain class, such as in imbalanced datasets. Higher values for 

Favorable Predictive Value and Unfavorable Predictive Value mean that the model is more accurate 

for that class relative to that metric. It's important to measure both Favorable Predictive Value & 

Unfavorable Predictive Value Parity together, because poor performance in either one can lead to 

biased outcomes, often for different stakeholders. These metrics will help you investigate how your 

model balances both of these types of accuracy across your protected classes. 

The Per-Class Bias graph shows whether the model exhibits biased behavior across protected 

features. The top fairness score across each protected class is scaled to 1.0, and the fairness scores 

for every other class are scaled relative to that value. If the fairness score for a class crosses the 

selected fairness threshold, the bar for that class is shown in red. If DataRobot used in-sample 

predictions to derive the model's performance scores (see Overview of Model Results), the 

fairness scores were calculated using in-sample validation data. 

If there is not enough data for a class, its score is still calculated, but the bar for that class is shown 

in gray. The heuristic for whether a class does not have enough data is the following: 

• If the class has <100 rows in the validation data, then it does not have enough data. 

• If the class has between 100 and 1,000 rows in the validation data, but has fewer than <10% of 

the rows of the majority class, then it does not have enough data. 

• If the class has >1,000 rows, then it has enough data. 

The following figure is the Per-Class Bias graph for each protected feature in this project: 



clean_adm1 

 

The Cross-Class Data Disparity graph shows how different protected classes differ in their data 

distribution, in order to understand why the model treats each class differently based on the 

dataset. The X-axis depicts the feature importance of each feature in the dataset, while the Y-axis 

shows the Population Stability Index (PSI) for that feature compared across the two selected classes 

of the protected feature. The higher the feature importance, the more important that feature is to 

the model. The higher the PSI, the more differences there are for that feature across each of the two 

classes. 

 


