Skip to content

Functionality Status
Prediction Analysis

Check out the beta launch here!

Overview:

This tool harnesses the power of machine learning to make predictions about the status of water points based on the past performance of similar water points in the country.

Illustrative Uses:

  • Predict which water points are at a higher risk of failure in order to carry out preventative maintenance
  • Identify high-risk water points in order to increase monitoring where it is most needed
  • Determine which districts have relatively more high-risk water points to more effectively match maintenance budgets with likely need

Instructions:

  1. Select target country from the drop-down menu
  2. Select target district(s) from the drop-down menu
  3. Select whether you want the points on the map colored by the “Last Known Status” (when the last data was collected), or “Today’s Prediction”
  4. Click Submit
  5. Access data by clicking “Download Data”

Methodology:

This tool uses available WPDx attributes, such as #water_tech, #water_source, #pay, and others as training data for developing a classification machine learning model. The target variable is #status_id. The models are tuned to optimize the precision (percent of water points that are actually broken) and the recall (percent of all broken water points that are identified as high risk). Predictions are based on adjusting calculating the age of each water point based on #install_year and the current year. A priority for each water point (high/medium/low) is assigned based on the relative number of water points within 1 kilometer and the population within 1 kilometer.

Limitations:

Like all predictions, these predictions are based on probabilities and may not reflect the reality of the status of water points at a given point in time.

Latest News